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Two types of waves can be propagated independently from one another in a 
homogeneous elastic medium. In the longitudinal waves the displacements 
m are such that there are no element rotations (rot m = 01, and in trans- 
verse waves there are no volume changes (div u = 0). 

In a non-homogeneous elastic medium no independent longitudinal and 
transverse waves exist. Volume changes as well as element rotations are 
simult~eously present in these wave motions, 

This article deals with the study of the character of the displacements 
near the wave front (a surface at which the displacements undergo a finite 
discontinuity), which moves in an ideally elastic nonhomogeneous medium. 
Fronts with such discontinuities may correspond to sources of waves with 
a time dependence of the type of a step force (Heaviside functions), or 
an integral of it [ 1 I. 

Let some finite volume V be isolated in the medium and assume that the 
properties of the material inside V are such that the elastic Lame para- 
meters x and p vary continuously, together with their derivatives, and the 
density p is a continuous function of the coordinates. 

The displacements in wave motions depend on the coordinates and the 
time, and can thus be studied as vector point functions in a four-dimen- 
sional space-time. 

The wave front traverses the entire volume Y in a finite time. Thus 
the entire process can be assumed to take place in a bounded region of 

the space-time G. 

Corresponding to the moving front in region G there is a hypersurface 

r. on which the displacements undergo a finite jump. Assume that there 

exists only one surface of discontinuity 1: which divides C into two Darts 
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Let us introduce a Cartesian coordinate system x1, x2, x3. The equa- 
tions of motion in this coordinate system can be written in the following 
form: 

(1) 

where r ij are stress components and ui are displacement components. 

According to our assumption the nonhomogeneous medium obeys Hooke’s 
law, i.e. 

Here 6.. is the Rronecker delta. The operator on the vector function 
n(x, t) ii’obtained by substitution of (2) into (11 and denoted by L. A 
function that has a finite discontinuity inside the region cannot be the 
ordinary solution of the system of differential equations (1). Thus we 
require that the discontinuous function be the generalized solution in 
the Sobolev [ 2 ] sense. 

The vector function u(x, t) is called the generalized solution of the 
equations of the theory of elasticity in the region C, if for any vector 
function f (x, t), which is twice continuously differentiable and which 
goes to zero together with its first derivatives on the boundary, the 
following holds good: 

s (u.Lf) d% dt = 0 (3) 
G 

Let us introduce the quantities 

which are related to the components of the vector function f as the stress 
components are related to the displacements. All quantities r ij l go to 
zero on the boundary of the region C. 

The operator L is self-adjoint. and the expression 

3 dPi c?P, 
(f.Lu)-(u.Z.f)= 2’ a”i + at 

i=l 
has the appearance of a four-dimensional divergence. In this expression 

a 

‘i = 2 (fj7ij - UjTi;) (6) 
j=l 
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17) 

Let us aanume that the equation of the discontinuity hypersurface f’ 
can be written in the form t - y!r(x 1’ =2* x3) = 0. 

Let us split the integral (31 into integrals over G1 and G2, substitute 
the expressions from (51 and transform the integrals containing the four- 
dimensional divergence to surface integrals by the Gauss-Ostrogradskil 
formula. We obtain 

The surface integrals extend over dirrerent sides oi’ the surface r. 
Combining them into one integral we obtain 

where [Pi1 and [P& are difrerences of the corresponding values (jumps) 
of the quantities on dirterent aides of E In the subsequent discussion 
the square brackets will be omitted, with the implication that there are 
discontinuities in the functions wherever such occur. We transform the 
expressions under the surface integral so that they contain onls the 
runctions f i, their derivatives with respect to the directions lying in 
the plane tangent to I”, and derivatives with respect to the normal to the 
surrace E The terms containing the derivatives in the tangential direc- 
tions are of the form 

where @ is some iunction. and the differentiation takes place in a 

direction tangent to f: Here ne used integration by parts, and the fact 
that fi goes to zero on the boundaries of region G. Formula (8) can be 
rerritten in the form 

s (f -Lu) d% dt f 
s 

(I .Lu) d”x dt - 

Cl Gt 

\{(a~f,+(b.~)}rv~~+, =O 00) 
i- 

where 
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It follows from the fact that (10) hss to be satisfied by any vector 

function with the properties shown above. that LP = 0 in the regions G1 

and G2, and the conditions a = 0 and b = 0 are satisfied on the surface 

r. The generalized solution should be the ordinary solution in the regions 

where it is continuous together with its derivatives, and it should 

satisfy the additional conditions on the discontinuity surface. 

The e.quation b = 0 was analyzed in reference [3 I. It is a system of 

linear homogeneous equations in terms of the components of u. When the 

determinant of the system is equated to zero, for the function $ charac- 

terizing the wave front, i.e. the surface of discontinuity, we obtain the 

following equation: 

{P - P cvQ)“)” {P - (1 + 2P)(v~)2~ = 0 

The first bracket fives the equation for a front traveling at the 

speed of transverse waves, and the second that for a front traveling at 

the speed of longitudinal waves. As has been shown in [ 3 1, the displace- 

ment jump in the transverse wave is necessarily perpendicular to the 

normal of the wave front, and in the longitudinal wave is necessarily 

parallel to the normal of the front. Using these properties and equation 

(13), further results can be obtained from the equation a = 0. 

First let us study the condition a = 0 at the front of a longitudinal 

wave. If this equation is multiplied scalarly by the unit vector normal 

to the front t, the differential equation derived in 14 1 and 15 I, des- 

cribing the change of the intensity of the discontinuity along a ray, 

can be obtained. If the condition a = 0 is multiplied vectorially by t 
and some simple transformations are performed, a formula for the discon- 

tinuity of rot u at the front of the longitudinal wave can be obtained: 

1,ot u = z; (P = a‘qp - 2VP) 

where u is the discontinuity of the displacement vector at the front, and 

w is the speed of propagation of the longitudinal wave. 

Similarly, the condition a = 0 at the front of a transverse wave can 
be studied. When this condition is multiplied vectorially by t, a diffe- 

rential equation for the change of the intensity of the discontinuity at 

the front of a transverse wave along a ray [ 4 1, [ 5 I can be obtained. 

When this condition is multiplied scalarly by t and some simple trans- 

formations are performed, then a formula for the discontinuity of the 

divergence at the front of a transverse wave can be reached: 

where u is the discontinuity of the displacement vector at the front of 

the transverse wave, and b is the speed of propagation of transverse waves. 
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Knowing the displacement discontinuities at the front, from (14) and 

(15) we can compute the discontinuities of the rotation or divergence of 

displacements corresponding to the fronts of longitudinal and transverse 

waves. If the initial conditions for the displacement jumps are known, 

then they can be computed for all points through which the front passes 

by solving the ordinary differential equations derived in [ 4 I, and [ 5 1. 

It can be seen that in the homogeneous medium the discontinuities of 

the rotation of the displacements at the front of a longitudinal wave 

and the divergence of the displacements at the front of a transverse wave 

are equal to zero. 

Formulas (14) and (15) also make sense for continuously varying dis- 

placement fields. If at every point of the space the displacements change 

accorlling to the law f(t) after the time t0 at which the front passed 
that point, then the error in using formulas (14) and (15) would be of 

the order 

1, (1) = I f (~1 dT 

Such an estimate can be obtained by constructing a continuous solution 

out of the discontinuous ones by means of the Duhamel integral. 

For a rapidly varying function f(t), the errors near the wave front 

can be neglected, and it can be assumed that in this zone the formulas 

obtained relate the values of the displacements u to the values of div II 

and rot u respectively. This result may be obtained by a method of ex- 

panding the solution near the front as described in reference [4 1. 
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